card-3216_Biochemistry expert scientific with eyeglasses
Digital innovation

Driving operational improvements and quality of our services

Learn more
card-3210_Laboratory technicians conduct a series of tests on a chemical analyzer
Science Innovation

Uniquely positioned to shape, validate, and deliver biomarker assessments that strive to improve patient outcomes across diverse Therapeutic Areas

Learn more
card-3242_Scientist using tablet while colleagues working behind
Download our Corporate brochure

We are IQVIA Laboratories, a leading clinical trial laboratory services organization with end-to-end laboratory services and secure, enterprise-wide biospecimen and consent management solutions.

Download
card-3233_Laboratory scientist working at lab with micropipette, and 96 well plate
Corporate Video

Our commitment to customer success is embedded in every facet of our operations.

Learn more
card-3210_Laboratory technicians conduct a series of tests on a chemical analyzer
Science Innovation

Uniquely positioned to shape, validate, and deliver biomarker assessments that strive to improve patient outcomes across diverse Therapeutic Areas

Learn more
card-3216_Biochemistry expert scientific with eyeglasses
Digital Innovation

Driving operational improvements and quality of our services

Learn more
English You are about to exit for another IQVIA country or region specific website Please be aware that the website you have requested is intended for the residents of a particular country or region, as noted on that site. Ok Open in new tab Search

Insight

Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions

Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions
Home / Insights / Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions

Background
Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.

Results
All panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5–20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden.

Conclusion
This comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.

Read full article here.