Profiling and Identification of Lipid Modified Therapeutic Peptides and Metabolite **Using UPLC-HRMS: Challenges and Strategies**

Ailing Zhou, Nathan Fish, Tung Nguyen, Craig Haynes, Yijun Yi, Tom Fleischmann, IQVIA Laboratories, Indianapolis, IN

In vitro/In vivo

-14C/12C Co-spiking

IT UPLC SEPARATION

pH-adjusted buffers

THRMS/MS ANALYSIS

DDA/DIA

Heatmans

Q-Exactive Orbitrap

ESI+/ESI- switching

offline Radioprofile

Bioinformatics tools

SPE, PP, LLE/SLE/mixed-mode

RP-C18, HILIC or mixed-mode

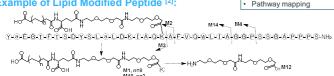
large-volume injection and nano-

□ METABOLITE CONFIRMATION

□ VISUALIZATION & REPORTING

Annotated M and MS/MS spectra

Co-chromatography of 14C/12C

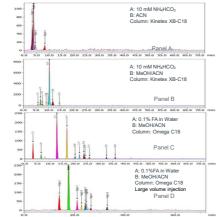

Introduction

- · LC-MS/MS plays a key role in the profiling and identification of therapeutic peptides (TPeps), that eventually contributes to the successful implementation of peptide-based therapies
- · With increased emerging TPeps entering clinical trials, the metabolite identification (MetID) of these TPeps remains challenging [1].
- Here, we present a case study related to an in vitro/in vivo metabolism of lipid modified Tpeps.
- · Tpeps studied include semaglutide, tirzepatide and other analogues conducted in non-clinical species (rat, dog, monkey, etc.) and humans
- Here we showcase how advanced sample preparation. chromatographic separation, and bioinformatics tools were integrated to address these challenges.

Key Challenges in TPeps MetID

- Structural Complexity: Amino acid substitutions, sequence variations, post-translational modifications (glycosylation, lipidation), disulfide bonds, and linker modifications alter fragmentation patterns.
- Low Abundance Metabolites (often <1% of parent drug) masked by matrix interferences such as endogenous interferences TMAP (N.N.N-Trimethyl-L-alanyl-L-proline betaine) and bile acids, albumin binding
- · Analytical Limitations: Poor ionization, fragmentation complexity (MS/MS), and lack of reference standards etc

Example of Lipid Modified Peptide [2]:

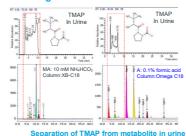

26[L]I]A]G]G]PIS SIGIAIPIP P .

Bioinformatic tool to assist structure elucidation (Biopharma Finder, MMS, Compound Discoverer etc.)

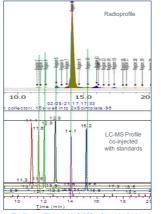
BioPharma Finder used for MetID by providing:

- Assignment of MS/MS fragment ions associated with peptide backbone moiety of molecule
- 2. Peptide metabolite sequence coverage
- 3. Quantitation of peptides by Deconvolution

Metabolite ID Workflow for TPeps **Chromatographic Optimization** O SAMPLE PREPARATION

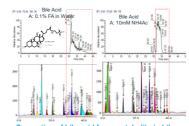

Radioprofiles of pooled Urine Panel A = reverse phase separation with poor retention of

radioactive components Panel B = change strong solvent improved retention of


Panel C = change column improved selectivity for separation of radioactive components

Panel D = large volume injection used to load sufficient mass of radioactive components to acquire MS and MS/MS data

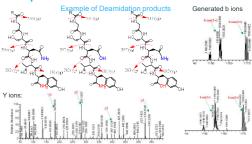
Mitigation of Matrix effect in urine


Co-chromatography

Radioprofile and LC/MS of pooled plama

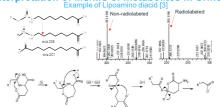
MetID is challenging in studies involving 100% [14C]labeled dosing or low-abundance samples. To aid metabolite identification. 12C reference standards were co-spiked into plasma/excreta matrices. This strategy enabled differentiation of MS patterns between 12C/14C compounds; retention time alignment between radioprofiles and LC/MS profiles; the unique 12C/14C pattern provided additional confidence in metabolite identification and MS accuracy.

Mitigation of Matrix effect in bile



Separation of bile acid from metabolite in bile

Acknowledgement


Grateful for the unwavering support from the Biotransformation team and all our collaborators.

Interpretation of MS/MS of metabolites in Plasma

HRMS combined with sufficient LC separation are critical to identify and quantify peptide metabolites with the higher structural similarity; one or few amino acid difference, or deamidation product with monoisotopic mass output resulted in +1 Dalton mass difference (a 0.20 Da, 0.25Da, 0.33Da mass increase for +5,+4,+3 charged MS or MS/MS fragments); unable to deconvolve separately by BioPharma finder algorithm nor Xtract algorithm without sufficient separation.

Interpretation of MS/MS of metabolites in Urine

Proposed stepwise formation mechanism of [lpb+O] product ions

Lipid-linker conjugate was detected as one common urinary metabolite of lipid modified peptide. It is interesting to observe that when glutamate included in the linker, a complementary ion pair such as [Lpb + O] appeared in negative LC-MS/MS. The particular product ions specific to fatty acyl mojety (carboxylate), annotated as [lpb+O] [3].

Conclusion:

- · This integrated UPLC-HRMS workflow enables robust MetID for lipidmodified Tpeps, addressing key challenges through adaptive chromatography, advanced HRMS, and bioinformatic software assisted interpretation of MS, MS/MS data.
- · Proteolytic hydrolysis/deamidation are primary metabolic pathway observed in circulation; Additional metabolic pathway in excreta included β-oxidation, oxidation, α-oxidation taurine conjugation etc.

References

1.He MX, et al, Metabolism and Excretion of Therapeutic Peptides: Current Industry Practices, Perspectives, and Recommendations, 2023 Nov;51(11):1436 2.Martin, JA, et al. Absorption, distribution, metabolism, and excretion of tirzepatide in humans, rats, and monkeys, European J Pharm, Sci. 2024; 202;106895 3. Hueber R. et al. Identification of Bacterial Lipo-Amino Acids: Origin of Regenerated Fatty Acid Carboxylate from Dissociation of Lipo-Glutamate Anion, 2022, Amino Acids,