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In precision medicine, DNA-based assays are currently necessary but not always sufficient for
predicting therapeutic efficacy of cancer drugs based on the mutational findings in a patient’s tumor
specimen. Most drugs target proteins, but it is challenging and not yet cost-effective to perform high-
throughput proteomics profiling, includingmutational analysis, on cancer specimens. RNAmay be an
effective mediator for bridging the “DNA to protein divide” and provide more clarity and therapeutic
predictability for precision oncology. While RNA sequencing (RNA-seq) has been increasingly used
alongside DNA cancer mutation screening panels to assess the impact of variants on gene transcript
expression and splicing, comprehensive evaluations of RNA panels and the integration of expressed
mutation data analytics to supplement DNA panels are still limited. In this study, we conducted
targeted RNA-seq on a reference sample set for expressed variant detection to explore its potential
capability to complement DNA variant results or detect variants independently. The results indicated
that, with a carefully controlled false positive rate ensuring high accuracy, RNA-seq uniquely identified
variants with significant pathological relevance that were missed by DNA-seq, demonstrating its
potential to uncover clinically actionable mutations. On the other hand, while some variants were
detected by both approaches, others were missed by one or the other, reflecting either the nature of
these variants or limitations of thebioinformatics tools used. VariantsmissedbyRNA-seqare often not
expressed or expressed at very low levels, suggesting they may be of lower clinical relevance.
Incorporating RNA-seq into clinical biomarker panels will ultimately advance precision medicine and
improve patient outcomes by improving the strength and reliability of somatic mutation findings for
clinical diagnosis, prognosis and prediction of therapeutic efficacy.

Cancer is a genetic disease at the cellular level and is driven by specific
genetic variations that impact protein function1,2. Accurate profiling of these
genetic mutations improves clinical diagnosis, prognosis, and therapeutic
efficacy by revealing the uniquemolecular basis of a patient’s malignancy3,4.
While panel-based DNA sequencing (DNA-seq) and whole-exome
sequencing (WES) are the current accepted standard methods for detect-
ing mutations in tumor samples, they primarily determine the presence or
absence of variants without revealing their functional consequence.

DNAmay be considered as “potential” since the critical transformative
steps of transcription and translation must occur prior to building cellular
components and machinery. Proteins mediate biological functions. DNA
mutations (e.g., point mutations, insertions, and deletions [indels]) can be
detected, measured, and reported with accuracy and precision in a high-
throughput, cost-effectivemanner, greatly aiding individualized cancer care
and clinical decision-making. While proteins can be measured, detecting
mutations within them is difficult to achieve in a high-throughput, cost
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effective way. RNA may be an effective mediator for bridging this gap and
providing greater clarity and predictability for precision medicine.

RNA sequencing (RNA-seq) provides additional information than
DNA-seq, such as whether a variant is expressed and to what level. Thus,
RNA-seq bridges the gap between DNA alterations and protein expression
activity5–7. Furthermore, RNA-seq facilitates the detection of transcript
variants, such as alternative splicing and fusion transcripts, which can alter
protein function and drive disease phenotypes8–10. Additionally, by ana-
lyzing non-coding transcript regions, RNA-seq can also identify variants
that affect regulatory elements critical for gene expression11,12. The com-
prehensive, novel, and orthogonal insights offered by RNA-seq are thus
invaluable, potentially improving precision medicine by strengthening the
robustness and predictability of the molecular data, which greatly aids
associated clinical decision making.

RNA-seq can often provide a stronger mutation signal for variant
detection in moderate to highly expressed genes as the variant allele will be
adequately represented in the sequencing data. For instance,Wilkerson et al.
demonstrated that integrating RNA-seq andWES data enhanced mutation
detection capacity, especially in the case of low-purity tumor samples5.
Similarly, another study comparing paired RNA-seq andWES formutation
analysis found that RNA-seq revealed more potential novel somatic muta-
tions thanWES alone, suggesting that RNA-seq enhances the robustness of
somatic mutation identification6. Additionally, Rabizadeh and colleagues
used RNA-seq to identify tumor somatic single nucleotide variants (SNVs)
in lung and other cancers, revealing that up to 18% of these SNVs were not
transcribed and indicating that some mutations detected by DNA-seq are
likely clinically irrelevant7. This highlights the critical need to validate the
clinical relevance of mutations using RNA-seq, ensuring that tumor mole-
cular classification and treatment decisions are based on actionable genetic
targets, which are known to be expressed in the patient’s tumor.

Despite the advantages mentioned above, RNA-seq faces significant
challenges in verifying somatic mutations. These include alignment errors
near splice junctions, especially for novel junctions13, which can distort
findings. Additionally, RNA editing sites might be misinterpreted as DNA
genetic variants14,15, and variability in gene expression levels can lead to non-
uniform read depth. Furthermore, sequencing reads may be dis-
proportionately dominated by highly expressed clinically irrelevant genes
(e.g., housekeeping genes)16. To overcome these limitations, targeted RNA-
seq offers deeper coverage of genes with potential somatic mutations of
interest. Thus, higher detection accuracy and more reliable variant identi-
fication, especially for rare alleles as well as low-abundant evolving mutant
clones, are advantages of targetedRNA-seq17. Notably, some targeted RNA-
seq panels have been developed for detecting expressed variants. Among
these, the Afirma Xpression Atlas (XA) panel, which includes 593 genes
covering 905 variants, is available in the United States. and internationally
for clinical decision making involving thyroid malignancy18. Interestingly,
the XA panel has revealed that some DNA variants were poorly detected in
traditional bulk RNA-seq due to low expression of the mutated transcript,
highlighting the importance of targeted approaches in the management of
thyroid cancer18.

In real-world practice, it is crucial to consider how best to integrate
RNA-seq withDNA-seq to optimize variant detection and accuracy.When
DNA-seq is available, it serves as a valuable baseline due to its high accuracy,
sensitivity, and relatively low cost that continues to decline. In such cases,
RNA-seq can be employed to verify and prioritize the variants detected by
DNA-seq, leveraging its ability to confirm their expression and functional
relevance of these variants. This integrative strategy not only improves the
detection of expressed variants but also serves as a critical step in the
development of advanced therapeutic approaches. For example, mRNA-
4157 (V940) is a novel mRNA-based individualized neoantigen therapy
encoding up to 34 neoantigens, designed to target a patient’s unique set of
cancer neoantigens. A neoantigen selection algorithm was developed to
verify and prioritize the amino acid candidates19. This complementary
approach ensures that the clinical implications of somatic mutations are
accurately assessed, enhancing the overall precision of genetic diagnostics.

Conversely, in scenarios where DNA-seq is not available, RNA-seq
must be analyzed thoughtfully to ensure the reliability of variant detection.
This is especially important given the heterogeneity of solid tumors and
corresponding variability or “regional” nature of their gene expression. This
involves implementing stringent measures to control the false positive rate
(FPR), therebymaintaining a high level of accuracy. By carefully eliminating
falsepositives (FPs) and employing targetedRNA-seqpanels, it is possible to
achieve robust variant detection for genes that are expressed even in the
absence of DNA-seq findings. These strategies collectively underscore the
critical role of RNA-seq in both complementing DNA-seq and indepen-
dently informing precision medicine.

In clinical diagnosis, drug development, and therapeutic decision
making, understanding the impact of genetic variants on protein expression
(“the target”) and function is crucial. For example, a DNA mutation in a
gene that is never expressed in a certain cell type or tissue in question will
have less consequence versus those expressed. This study aimed to thor-
oughly assess variant detection using targeted next-generation sequencing
(NGS) data, offering a comprehensive guide for testing clinical oncopanel
sequencing focusing on two common scenarios: (1) using RNA-seq results
to verify and prioritize DNA variants; (2) Using RNA-seq independently to
detect variants. We employed four targeted panels to detect variants in
paired RNA and DNA NGS data with a reference sample created by our
previous study, where a ground truth DNA variant set and a high-
confidence negative position list were established20. The list of high-
confidencenegativepositions is indispensable for calculating theFPRand its
control by adjusting the parameters in bioinformatics pipelines. The variant
detection results enabledadetailed comparison, highlighting thepotential of
RNA-seq to validate and augment DNA-seq findings. The analysis focused
on ensuring high accuracy in variant detection and exploring the perfor-
mance of RNA-seq across different panels and methodologies in different
scenarios. By doing so, we aimed to evaluate approaches for further vali-
dating the detected DNA variants by comparing them to targeted RNA-seq
expressedmutations, and to provide insights that enhance the precision and
reliability through a more comprehensive somatic mutation detection
strategy, which is pivotal for advancing precision medicine and improving
patient outcomes.

Results
In this study, four targeted panels were used to assess variant detection in
paired targeted DNA-seq and RNA-seq data generated for the reference
samples (Fig. 1). These panels (the Agilent Clear-seq Custom Compre-
hensive Cancer DNA panels [“AGLR”] and the Roche Comprehensive
Cancer DNA panels [“ROCR”]) included AGLR1 and ROCR1, which are
DNApanels, andAGLR2 andROCR2,which areRNApanels. These panels
were designed with specific characteristics to target key genomic regions or
transcripts of interest. The AGLR panels were designed with longer probes
(120 bp), while the ROCR panels utilized shorter probes (~70–100 bp).
Usually, RNA panels have some exon-exon junction covering probes to
captureRNA-specific variants.DNApanelsmayhaveprobes extending into
the intron regions. Additional details about the panels’ designs, probe
lengths, and targeted regions are provided in the Methods section. Addi-
tionally, whole transcriptome RNA-seq (WTS) data were included to
evaluate the benefits and disadvantages of targeted RNA-seq approaches.
Analysis was limited to the intersection of each panel’s targeted regions and
the pre-defined high-confidence Consensus Target Region (CTR)20,21

(Methods). Known positive (KP) variants and known negative (KN) posi-
tions from the reference sample study20 served as the ground truth in this
study to evaluate the performance and calculate the FPR.

RNA-seqconfirmsandprioritizes clinically relevantDNAvariants
To gain an overview of the capacity of targeted RNA-seq approaches to
detect transcribed DNA variants, we aimed to recall as many variants as
possible in each panel by including all variant calls from all three callers,
including VarDict22, Mutect223, and LoFreq24, adopted by an in-house
assembled bioinformatic pipeline modified from SomaticSeq25 (Methods).
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To this end, a relatively conservative approach was adopted, where variants
with a variant allele frequency (VAF) ≥ 2%, a total read depth (DP) ≥ 20,
and an alternative allele depth (ADP) ≥ 2 were considered, minimizing
explicit control of the false positive rate (FPR) for RNA-seq results
(Methods). We then compared the targeted RNA-seq results with the true
set identified from the reference samples in our previous study20 (Methods).
With the indicated cutoffs, the Agilent Clear-seq Custom Comprehensive
Cancer DNApanels (“AGLR1 and AGLR2”) reported a significant number
of FPs and uncharacterized calls, which were defined as neither known
positive (KPs) nor known negative (KNs) (Fig. 2a). In contrast, Roche
Comprehensive Cancer DNA panels (“ROCR1 and ROCR2”) reported
substantially fewer of these calls. Additionally, fewer calls were detected in
the WTS results within the panel regions (Supplementary Fig. 1). This
finding is consistent with the broader but shallower coverage provided by
WTS compared to the deeper, more focused sequencing of these targeted
panels. While the targeted panels offer enhanced detection capabilities for
low-frequency variants, the non-stringent cutoffs compounded by current
bioinformatics limitations can potentially lead to incorrect signal inter-
pretation and an increased number of false-positive calls.

Notably, when compared to the total number of KPs targeted by the
panels, only 51.3% (AGLR2) to 63.1% (AGLR1) were detected by targeted
RNA-seq (Fig. 2a), evenunder anon-stringent cutoff.AlthoughAGLR1was
designed as a DNA panel, RNA was also captured after the reverse tran-
scription to double-strand cDNA and sequenced using this panel to assess
its performance of variant detection through targeted RNA-seq. By inves-
tigating the coverage of the KP variants detected and missed by RNA-seq,
significant differences were observed from all panels (Fig. 2b), indicating
that the variants not detectedbyRNA-seqhad lowexpression levels. Further
detailed investigation of the missed KP variants revealed that over 80% of
these variants were not expressed, hence not found in the RNA-seq results.
The remaining variants were filtered out due to either low VAF, low DP, or

low ADP (Fig. 2c). This finding suggests that RNA-seq can complement
DNA-seq byhighlighting variants that are transcribed andhencepotentially
functional, providing a more robust and comprehensive variant impact
understanding.

The use of a conservative approach provided uswith a landscape of the
variants detected by targeted RNA-sequencing, but the excess of FP calls
makes this approach unsuitable to conduct a fair comparison across panels.
To this end, we implemented a more focused approach by fixing for all
panels the estimated FPR to 50 FP calls per million bases, leveraging the
“truth” set from the referenceDNA samples (Methods).We first focused on
theFPcalls identifiedby theirVAF,DP,ADP, and the individual callerswho
reported them. As a result, most of the FP calls were reported by VarDict
alone and only had two ADPs (Supplementary Table 1). However, VarDict
appearedmore sensitive, and the FP calls it identified had significantly lower
coverage than the KP variants (Supplementary Table 1). To enhance
accuracy, we set a rule, different from the non-stringent technical cutoff,
requiring a variant call to be reported by at least two out of three callers, and
have anADPgreater than three.We then adjusted theVAFcutoff to achieve
an FPR of approximately 50 per million bases for all the panels (Methods).
We then compared the recall before and after the FPR control across panels
(Fig. 2d). All panels missed some additional KP variants with such a cutoff.
Compared to the AGLR panels, the ROCR panels missed fewer KP variants
as theyhad fewer FP calls to be removed initially.Ultimately, 43.5% to53.6%
of the KP variants were confirmed by RNA-seq data, with the FPR con-
trolled. This highlights that the selection of cutoffs significantly impacts the
KP variants detection and validation.

A concordance assessment between DNA-seq and RNA-seq variant
VAFs was conducted. We compared the VAFs of KP variants detected in
RNA-seq to their corresponding values in the DNA-seq true set for each
targeted panel, using Rep-1 as an example. Supplementary Fig. 2 presents
scatter plots illustrating the relationship between true DNA-seq VAFs (x-

Fig. 1 | Study design.Matched RNAandDNA reference samples were extracted and
sequenced using four targeted panels, with library replicates for comprehensive
comparison of variant detection against the known variants characterized in the
DNA reference sample. The DNA reference sample was constructed by an equal
mass mixture of the DNA samples extracted from the ten cancer cell lines used to
make the RNA reference sample, i.e., Agilent Universal Human RNA Reference
(UHRR) sample. Although AGLR1 and ROCR1 were originally designed as DNA
panels, RNA was also captured after the reverse transcription to cDNA and

sequenced using these panels to assess their applicability for variant detection.
AGLR2 and ROCR2 were specially designed for comprehensive analysis. These
research panel designs incorporated targets from eight established onco-panels and
included additional gene sets considered of interest to the community, forming the
basis of these custom union panels. See our data descriptor paper for details47. In
comparison, whole transcriptome RNA-seq (WTS) with poly(A) enrichment was
also conducted for UHRR.
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axis) and RNA-seq detected VAFs (y-axis) for each panel. We observed a
strong correlation between DNA-seq and RNA-seq VAFs across all panels,
withR² values consistently around 0.85, indicating good agreement between
the two sequencing approaches.Whilemost variants followed a linear trend,
some deviations were noted, whichmay be attributed to differences in gene
expression levels, allele-specific expression, and RNA processing effects.

Independent variant detection through RNA-seq identifies clini-
cally actionable mutations
Importantly, there are scenarios where RNA-seq may need to be used
independently for variant detection, such as when DNA-seq data is una-
vailable or when investigating gene expression-specific variants. In these
cases, the performance and reliability of RNA-seq alone become critical.We
therefore explored the benefit of using RNA-seq as a standalonemethod for
variant detection by assessing its potential to accurately identify variants. To
ensure accurate variant detection with RNA-seq alone, it is essential to
control the FPR rigorously by avoiding minimal or non-stringent cutoffs.
Starting with the cutoff criteria set as: agreement between at least two out of
three callers, VAF ≥ 2%, ADP ≥ 4, and DP ≥ 20, we first evaluated the
estimated FPR of targeted panels and the WTS results in panel regions. As
expected,mostFPcalls occurredat lowVAFranges (≤5%) for all panels (Fig.
3a). With these cutoffs, the estimated FPRs for different panels and data
types ranged from 13 to 60 per million bases. The ROCR panels exhibited
higher FPRs compared to the AGLR panels, indicating differences in panel
designs and sensitivity to FPs. Additionally, more FP calls were found in the
WTS data than targeted panels within the same regions.

We noticed that the FPR of ROCR1 was unexpectedly high within
VAF range ≥5%. Further examination revealed that a cluster of 10 FP
calls within a tiny region was the major contributor, resulting from

incorrect variant calling by the pipeline (Supplementary Table 2). Most
of these calls were specific to the ROCR1 panel. None were found in any
DNA-seq results, and only two and four were identified in the AGLR2
and ROCR2 targeted RNA-seq panels, respectively. Notably, most of
them were also detected in WTS data within the ROCR1 panel regions.
Additionally, these variants were classified as “clustered events” by
Mutect2, which is indicative of FP calls (Supplementary Table 2).
Considering these FP calls were clustered, panel specific, had high VAF,
and could be detected only under certain settings, we excluded these 10
calls from the rest of the analysis to strengthen the control of FPR for
RNA-seq data. Furthermore, to ensure the accuracy in the utilization of
RNA-seq independently for variant detection, the FPR must be reduced
to aminimal level. To reach a FPRof 5 permillion bases, we increased the
VAF cutoff for each panel. Due to the differences across panels, the
requiredVAF cutoffs on average varied: AGLR1 at 4.4%, AGLR2 at 3.7%,
ROCR1 at 5.2%, and ROCR2 at 5.7% (Supplementary Table 3).

After the FPR was reduced to a minimal level, we then evaluated the
overall variant detection performance of targeted RNA-seq and WTS data
independently. Reproducibility was calculated across pairs of individual
replicates, serving as an indicator of the stability of the panels. For targeted
RNA-seq data, reproducibility rates ranged from 85% to 95%, with the
AGLR panels showing lower values than the ROCR panels (Fig. 3b,
Methods).However, valueswere similarwithin the samepanel set, although
the panel types and sizes varied. Thismight be due to inherent differences in
design or technical variability between panels. Notably, WTS results
exhibited higher and more stable reproducibility (~94% for all panel
regions), likely because the WTS results originated from the same sequen-
cing run, and the observed differences were only due to the specific regions
analyzed (Fig. 3b).

Fig. 2 | Using RNA-seq results to verify and prioritize DNA variants. a The
numbers of different types of calls reported by various panels without controlling the
FPR. The “true set” was established in our previous study using the same reference
samples. Variants not included in the “true set”were categorized as uncharacterized
calls. The blue line represents verified true variants that are targeted and sequenced
by the specific panels (AGLR or ROCR), meaning they fall within the regions tar-
geted by the probes in the panels. b Comparison of expression levels between two
groups of known positive variants: those detected and those missed by targeted
RNA-seq across different panels. The number of reads (Y axis) was set to zero if a call

was absent in the expression results. A Wilcoxon Rank Sum Test was applied,
resulting in a significant p-value of 2.2e-16 for all panels. c Known positive variants
missed by targeted RNA-seq data. Not-expressed: not detectably expressed. For
example, it may be fairly expressed but the bait performance is poor. Low-VAF: calls
were expressed but had a VAF < 2%, Low-DP: expressed calls with VAF ≥ 2% but
had a DP < 20, Low-ADP: expressed calls with VAF ≥ 2% and DP ≥ 20, but ADP < 2
(=1). d Comparison of average recall values across panels, considering conditions
with non-stringent cutoff versus where the FPR was reduced to 50 per million bases.
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To reduce the FPR for the WTS results to the minimal level, higher
VAF cutoffs were required compared to targeted RNA-seq: AGLR1 at 9.3%,
AGLR2 at 9.3%, ROCR1 at 9.5%, and ROCR2 at 9.0% (Supplementary
Table 4).We then evaluated thepositive predictive values (PPVs), calculated
as the ratio of known positive variants to the total variants called by each
panel or in panel regions by WTS. Given the presence of uncharacterized
calls reported by RNA-seq, we calculated both upper (about 99.5%) and
lower (about 96%) bounds of PPVs for an average of the four replicates,
classifying all the uncharacterized calls as either positives or negatives,
respectively (Methods). As we have reduced the FPR for all the panels and
WTS results in panel regions to the same minimal level, similar and high
PPVswere observed for all the datasets (Fig. 3c). Thefindings suggested that
stringent control of FPR yielded high PPVs across different sequencing
approaches. Even though we observed similar levels of PPV across all
datasets, some differences in recall were noted. Targeted RNA-seq con-
sistently showedhigher recall values thanWTS (Fig. 3d). This highlights the
benefit of targeted RNA-seq for variant detection, as it provides deeper
coverage in specific regions, allowing for the detection of more positive
variants.

Comparative analysis of variants identified in overlapping panel
regions
Different panels demonstrated varying performance in terms of reprodu-
cibility and FPR when analyzed individually (Fig. 3). To understand the
varying performance in more detail, we sought out to evaluate the con-
sistency and accuracy of variant detection across the different panels within
their overlapping target regions. To achieve this, we conducted a detailed
comparison focusing on panels from the same vendor (AGLR1 and
AGLR2) and the same panel type (AGLR2 and ROCR2, RNA panel).

The overlapping regions between AGLR1 and AGLR2 encompassed
1.49 million bases. For AGLR2 and ROCR2, the overlapping regions

included 2.89million bases. Using one of the four replicates as an example,
we observed the variant call concordance scores of 85.2% and 86.1% in the
overlapping regions of AGLR1 and AGLR2, respectively (Supplementary
Fig. 3). Notably, the reproducibility based on replicate pairs was approxi-
mately the same in AGLR panels (Fig. 3b), indicating consistency in the
results of these two panels from the same vendor. The differences observed
in the overlapping regions ofAGLR1 andAGLR2 can be partly attributed to
the boundary effect caused by the cutoff applied21. As shown in Fig. 4a,
82.7% of AGLR2 variant calls in the overlapping regions were also reported
by ROCR2, with a reciprocal confirmation rate of 75.7% for ROCR2 calls,
resulting in 288 and 441 panel-unique variants from each side, respectively.

Overall, we observed high consistency in reported variant position
depth and VAF between the two panels for common variants (Fig. 4b). The
R2 forVAFwas notably high at 0.962, significantly surpassing theR2 of 0.630
for log2(DP). This highR2 value for VAF supports the accuracy of RNA-seq
in detecting genetic variants and highlights the intrinsic properties of the
genetic variants. Variants with larger differences in VAF between the two
panels were associated with low variant position depths, as indicated by
larger dot sizes, with the smallest DP = 20 (Fig. 4b). The considerable
variability in variant depth might impact the variant calling pipeline and
drive differences in the results. For panel-unique variants, we observed a
similar distribution of variant depth compared to shared variants. However,
the VAFs of these unique variants were significantly lower, particularly for
AGLR2-unique variants (Fig. 4c). Additionally, a boundary effect at the
VAF cutoff was observed, which could also contribute to the detection of
panel-unique variant calls.

Further investigation revealed various possible reasons driving panel-
unique variants. Specifically, 271 AGLR2-unique variants found in the
ROCR2 results were filtered out due to either being reported by only one
callerorhaving lower thancutoffVAF,DP, orADP.Toachieve the lowFPR,
differentVAFcutoffswere required forAGLR2 andROCR2, set at 3.7%and

Fig. 3 | Independent variant detection using RNA-seq. a The estimated FPR for
each targeted panel and WTS results, restricted to panel regions. Various VAF
cutoffs were applied for each panel and data type to achieve an FPR of 5.
bReproducibility measurements of targeted RNA-seq andWTS results, restricted in
panel regions, after the FPR to 5 per million bases. c PPV estimates by panel
(average), including WTS results within each panel region. The upper bound PPV
was calculated by considering all unknown variants as true positives. Conversely, the

lower bound PPV was obtained by treating all unknown variants as negatives. This
approach provides a range of possible precision values, accounting for the uncer-
tainty in RNA-unique variant classification.dComparison of recall rates for targeted
RNA-seq and WTS results after controlling the FPR to 5 per million bases. Recall is
defined as the proportion of known positive variants successfully detected by each
panel, highlighting performance differences across sequencing methods.
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5.7%, respectively. The largest portion (61%) of AGLR2-unique variants
were those detected in AGLR2 but failed to pass the higher VAF cutoff for
ROCR2. In contrast, the majority (59%) of ROCR2-unique variants were
initially detected by only one caller in the AGLR2 results and subsequently
filtered out. We also found that 25% of the ROCR2-unique variants were
detected by no caller in the AGLR2 data (Fig. 4d). The detection of panel-
unique variants highlights the impact of panel-specific cutoffs and the
inherent variability in bioinformatics pipelines. These discrepancies suggest
that while some panels may excel in sensitivity, others offer greater speci-
ficity, necessitating a balanced approach in panel selection and variant
calling based on the clinical or research context.

Impact of bioinformatics factors on variant detection
To further investigate the impact of increased coverage on variant calling
efficacy, we generated amerged-library dataset by combining the alignment
files of two replicates for theROCR2panel. Sixmerged-library sampleswere
created (replicates 1&2, 1&3, 1&4, 2&3, 2&4, 3&4) and used for calling
variants using the same pipeline. The median variant depth of the merged-
library samples (~600) was about twice that of the single-library samples
(Supplementary Fig. 4).We next compared the number of variants detected
in single andmerged libraries after controlling for the FPR. As expected, we
observed similar numbers of FP calls on average (10 vs. 10). However, with
higher coverage inmerged libraries,more true positives on average (2189 vs.
2045) were detected. Taken together, these results demonstrate the benefits
of higher coverage for improving the sensitivityof variantdetection (Fig. 5a).

The bioinformatic methods employed, such as read aligners and var-
iant callers, significantly impacted the results of variant detection. We
required the agreement of two callers to make a call when using RNA-seq
alone for variant detection to boost confidence. Here, we compared the
different types of calls made by individual callers. Without controlling the
FPR, VarDict detected the highest number of KP variants in AGLR2 and
ROCR2 (Fig. 5b). However, it also reported a much higher number of FP
and uncharacterized calls compared to the other two callers. Mutect2

detected more KP calls while yielding a comparable number of FP and
uncharacterized calls compared to LoFreq. Then, we elevated the VAF
cutoff for each caller to control the FPR. Setting the FPR to 5 per million
bases resulted in the loss of some KP variants. Notably, using these criteria,
VarDict reported the lowest number ofKPvariants, as over 800werefiltered
out. (Fig. 5b).

We further investigated the impact of different RNA-seq mapping
methods by employing three commonly used aligners for RNA-seq data:
HISAT226, STAR27, and Magic-Blast28. Mutect2 was chosen due to its
compatibilitywithmany aligners and its ability to detect the highest number
of KP variants while controlling the FPR to 5 per million bases (Fig. 5b). To
ensure high-confidence results, VAF cutoffs were set for individual aligners
to achieve the FPRof 5 permillion bases (Supplementary Fig. 5). As a result,
the Magic-Blast-based pipeline yielded the largest number of total calls and
KPs, followed by HISAT2, with STAR reporting the fewest (Fig. 5c). The
pattern was consistent across all panels and library replicates. When con-
trolling the FPR to 5 permillion bases, these pipelines, consisting of a single
caller Mutect2, reported significantly fewer total calls and KP variants
compared to the assembled method. A large portion of the variants were
commonly detected across different aligners, resulting in a small yet con-
siderate portion of aligner-unique variants (Fig. 5d). There was strong
agreement (R > 0.95) inVAFandDPof commonvariants across the various
aligners (Supplementary Fig. 6A). However, differences in VAF were
observedamong the aligner-uniquevariants. STAR-uniquevariants showed
lower VAF values than those detected based on other aligners (Supple-
mentary Fig. 6B).

Another evaluation on the impact of VAF and alternate (ALT) DP
thresholds on RNA-seq variant detection was conducted based on the three
aligners.We assessedmultiplefilter combinations bymeasuring the average
number of total variant calls, KP calls, and FP calls across replicates (Sup-
plementary Fig. 7). The results demonstrate a consistent pattern across all
aligners. Higher VAF and ALT read thresholds led to a reduction in total
variant calls, while effectively lowering FPR and improving precision.

Fig. 4 | Comparison analysis of variant detection between AGLR2 and ROCR2 in
the overlapping region (replicate 1 as an example). a The number of variants
detected in the overlapping region byAGLR2 andROCR2 excluding knownFP calls.
b Comparison of the log2 variant depth (larger symbol sizes indicate lower variant

position depths) andVAF for commonvariants shared betweenAGLR2 andROCR2
in the overlapping region. cDistributions of total DP and VAF per variant category,
comparing panel-unique and common variants to both. d Percentage of the four
types of panel-unique variants explaining why the other panel missed them.
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Notably, KP calls remained relatively stable, suggesting that parameter
adjustments primarily refine variant calls without significantly compro-
mising sensitivity. Conversely, lower thresholds resulted in a sharp increase
in FPs, highlighting the importance of careful parameter selection. These
findings confirm that fine-tuning filtering criteria is essential for optimizing
RNA-seq variant calling while maintaining a balance between sensitivity
and specificity.

Clinical significance of RNA-unique variants in enhancing pre-
cision oncology
Lastly, we explored the relevant and potential impacts of RNA-unique
variants on human diseases. RNA-unique variants can provide critical
insights into gene expression dynamics and their potential role in dis-
ease, especially when these variants influence transcript splicing, reg-
ulation, or protein function. To achieve a direct and fair comparison, we
used targeted DNA-seq data for each panel to detect variants and
compared it against paired RNA-seq results. For DNA-seq data, we
applied cutoffs of VAF ≥ 2%, ADP ≥ 4, DP ≥ 20, and required agreement
from at least two out of three callers to ensure a low FPR. As a result, at
most one FP call was reported in any replicate, implying FPR below 1 per
million bases. For RNA-seq data, wemaintained the FPR at 5 per million
bases and excluded known FP calls from the comparison. We identified
variants only present in the RNA-seq results for each replicate, collecting
a union set for each panel. This resulted in 201 RNA-unique variants
(147 exclusive variants): AGLR1 with 30, AGLR2 with 79, ROCR1 with
44, and ROCR2 with 48 (Supplementary Table 5). All these variants met
the established cutoffs for each panel and had high VAF and variant DP,
indicating the reliability of these calls (Supplementary Fig. 8). Taking the
AGLR2 panel as an example, we found that 29 out of 79 RNA-unique

variants were absent in all the DNA replicates; 35 of the remaining 50
were only detected by one caller (VarDict), and the rest (15) were filtered
out due to VAF (5) or DP (10). These results suggest that while these
RNA-unique variants tended to be real calls, a fraction of these may be
missed by DNA-seq due to low signal.

We employed SnpEff and SnpSift29 to identify the relevance and
putative impacts on human disease of the 147 RNA-exclusive variants
across all four panels based using ClinVar data. These 147 variants were
observed after excluding duplicates from different panels. As a result, 90
variants were predicted to have either HIGH or MODERATE impacts
(Supplementary Table 5). The affected feature type, based on Sequence
Ontology (SO) terms, included frameshift_variant, missense_variant, mis-
sense_variant & splice_region_variant, protein-protein_contact, sequen-
ce_feature, stop_gained, structural_interaction_variant. Additionally, 33
RNA-unique variants were annotated with ClinVar clinical disease name
(CLNDN) such as: non-small cell lung cancer, familial cancer of breast.
Notably, 20 out of these 33 annotated variantswere predicted to haveHIGH
or MODERATE impacts. To further strengthen the interpretation of these
RNA-unique variants, we cross-referenced them with the Catalog of
SomaticMutations inCancer (COSMIC) database30 to determine if any had
been previously reported in cancer. COSMIC is a cancer-specific mutation
database, and identifying matches provides additional evidence supporting
the relevance of these variants in oncogenesis. We found that 29 out of the
147 RNA-unique variants were also recorded in the COSMIC database.
Among these, 16 variants were identified to have HIGH or MODERATE
impacts by SnpEff and SnpSift. The COSMIC cross-referenced data have
been included in Supplementary Fig. 5. These results indicate that the RNA-
specific variants, after stringent FP control, are likely to be real and have
potential impacts on human diseases such as cancers. This analysis also

Fig. 5 | Impact of bioinformatics factors on variant detection. a The number of
variants detected in each individual library, including known positive, false positive,
and uncharacterized calls, comparing single-library andmerged-library approaches,
with ROCR2 as an example. MR1+ 2 represents the library prepared by merging
replicates 1 and 2 of ROCR2. b Comparison of the average number of calls detected
by individual callers used in this study in AGLR2 and ROCR2 without and with
controlling the FPR to 5 permillion bases. cThe average numbers of total and known

positive calls detected by pipelines based on different aligners in each panel. The
error bars represent the variability across four replicated libraries, calculated as the
standard deviation of the data. d The number of variants (excluding FP calls)
detected by different pipelines after controlling the FPR to 5 per million bases. An
impressive number of variants were found to be aligner-specific or shared by two
aligners across all panels.
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demonstrates thepotential utility ofRNA-seq in confirming andprioritizing
actionable variants, highlighting its value in clinical and research settings.

Impact of probe and exon length: no significant difference
observed
The probe lengths of the two panels differed by design, with AGLR2 using
120 bp probes and ROCR2 using probes of 70–100 bp. We investigated
whether these different probe lengths might cause inconsistent variant
calling results. We reasoned that, in the case of short exons, longer probes
would cover exon junctions, thus potentially decreasing the capture effi-
ciency. We compared the expression of the exons using the
TPMCalculator31 within the intersection regions of AGLR2 and ROCR2
panels. Although the panel with shorter probes (ROCR2) tended to detect
higher exon expression, no major difference in capture efficiency due to
probe length was observed (R2 0.85, Supplementary Fig. 9). We then
grouped the exons covering variants based on their lengths (Supplementary
Fig. 10A). As expected, longer exons coveredmore variants, butwith similar
percentages across panels. The AGLR2 panel showed a slight difference,
detecting fewer variants (in percentage) in smaller exons (≤200 bps). Sup-
plementary Fig. 10B shows the percentage of KP variants per exon length.
Longer exons (>120) covered more non-KP variants in ROCR2 (probe
length of approximately 75–100) and WTS panels than in AGLR panels,
having a 120 bp probe length. Despite the differences in probe lengths, there
was no significant impact on capture efficiency or variant detection across
the panels. Our results suggest that probe length variations do not sub-
stantially affect the performance of targeted RNA-seq panels in terms of
detecting and capturing exonic variants.

Discussion
Our findings revealed that RNA-seq confirmed about 50% of the KP var-
iants detected previously by targeted DNA-seq across each of the four
targeted panels. The variants missed by RNA-seq were typically char-
acterized by low expression or weak signals, such as lowVAF or insufficient
coverage, consistent with previous studies6,32. Notably, many of the DNA-
seq variants scored as unexpressed in this study were classified by COSMIC
or other databases as relevant to disease or cancer30. Therefore, variants
detected byDNA-seq but found not to be expressed at significant levelsmay
require more sequencing or further validations to confirm their therapeutic
and clinical relevance and to be implemented in practice. The results
underscore the importance of integrating RNA-seq with DNA-seq to pro-
vide a more comprehensive assessment of variant significance and to
prioritize variantswith confirmed expression for clinical decisionmaking.A
potential strategy to enhance detection concordance between RNA-seq and
DNA-seq involves deeper or more extensive sequencing, which could
capture low-expressed variants (e.g., transcription factors) more effectively.
With the recent advancements in sequencing technologies, such as the
Illumina NovaSeq X-Plus system, the associated costs of sequencing are
expected to drop by 40–80%, making this approach more feasible. Con-
sidering that cancer therapeutics costs can exceed $25 K per month,
improving the accuracy of therapeutic assignments through enhanced
multimodal (matched DNA and RNA) sequencing, which is of a relatively
low cost versus a cancer therapeutic, could significantly aid both financial
efficiency and clinical outcomes.

RNA-seq demonstrated strong efficacy in variant detection, standing
out evenwhenused independently.Despite the inherentdifferences inpanel
design, the results consistently showed high reproducibility, precision, and
an acceptable FPR. Notably, targeted RNA-seq panels matched the per-
formance of WTS in overlapping regions, offering superior recall and sig-
nificantly lower FPR, particularly for low VAF variants (≤5%). Crucially,
RNA-seq uncovered novel, clinically significant variants missed by DNA-
seq, highlighting its critical role in accurate variant detection. Thesefindings
reinforce that targeted RNA-seq is not only a reliable tool for identifying
clinically relevantmutations but also an essential complement to DNA-seq,
advancing precision medicine by validating and prioritizing key variants.
The discovery of RNA-unique variants with high predicted impact further

underscores the potential of RNA-seq to reveal biomarkers or therapeutic
targets that may be overlooked by DNA-seq alone, with profound impli-
cations for the development of targeted therapies, especially for cancers
driven more by changes in gene expression than by DNA mutations.

Achieving a high level of accuracy often comes with trade-offs. To
achieve a lower FPR, some true positives were missed due to the more
stringent cutoff that was applied. In this study, when reducing the FPR from
50 to 5 for targeted RNA-seq data, the recall decreased by 9%–15%,
depending on the panel. This trade-off underscores the balance between
minimizing FPs and maintaining a high recall rate (sensitivity) in variant
detection. To ensure high accuracy and reliability of the results, a con-
servative FPR is recommended in a scenario of using RNA-seq alone for
variant detection. In this study, it was demonstrated that when rigorously
controlled for FPs, RNA-seq can serve as an effective standalonemethod for
variant detection. This capability is particularly valuable in scenarios where
DNA-seq data is unavailable or where RNA-specific insights are essential,
thus broadening the scope and utility of RNA-seq in precision medicine.

The VAF is a critical threshold for variant detection, particularly in
cancer, where the presence of non-tumor cells dilutes the VAF of tumor-
specific variants. Variant detection accuracy can be significantly impacted
by the statistical models used by variant calling algorithms and hard VAF
cutoffs. In our study, we integrated three variant callers and adopted a
consensus approach that requires agreement from at least two callers, as
described in the Methods section. This consensus approach effectively
mitigated the impact of low VAFs on variant detection. However, the
boundary effect of theVAF cutoff still played a role in some cases, especially
when comparing variants identified across different replicated libraries or
methods. For example, our findings demonstrated that some panel-unique
variants with low VAF passed the cutoff in one panel but failed in another,
highlighting the challenges and considerations needed when setting and
interpreting VAF thresholds. This boundary effect underscores the
importance of careful VAF threshold selection and the potential need for
more flexible or adaptive approaches to improve variant detection con-
sistency across different datasets.

Differences in coverage depth and target specificity, which directly
impact the accuracy of variant detection, are likely contributors to the lower
accuracy ofWTS.While targeted RNA-seq offers superior specificity within
its focused regions,WTSprovides a broader, discovery-based approachwith
a more comprehensive view of the transcriptome, although at the cost of
higher FPR. The varying performance of different bioinformatics tools
highlights the need for careful selection andoptimization to ensure accuracy
in RNA-seq analysis. Proper cutoffs for VAF and DP, alongside strategies
suchasmajority voting involvingmultiple tools, are essential forminimizing
errors. Failure to implement these measures can lead to misinterpretations
in clinical practice, potentially impactingdiagnostic decisions and treatment
strategies.Moreover, the variability observed across different bioinformatics
tools and settings underscores the critical importance of pipeline optimi-
zation tailored to specific applications. As precision medicine advances,
refining these pipelines to balance sensitivity, specificity, and reproducibility
will be key to ensuring the reliability ofRNA-seq as both a clinical diagnostic
and research tool.

Importantly, both expressed and non-expressed genetic variants may
be actionable. For instance, oncogenic, gain-of-function mutations are
clinically relevant if they are expressed and have a functional consequence.
Oncogenic mutations of EGFR gene are frequent in non-small cell lung
cancer, and KIT or PDGFRA activating alterations are a hallmark of gas-
trointestinal stromal tumors. These mutations determine sensitivity/resis-
tance to tyrosine kinase inhibitors33,34. Similarly, KRAS mutations are very
common in many solid tumors, and targeted small molecule therapies,
including Krazati® (adagrasib) and Lumakras® (sotorasib), have been
approved for KRAS-G12C mutations. Numerous other targeted therapies
addressing various KRAS mutations are in clinical development35–38.
Importantly, the expression of the mutant gene may be lost during tumor
progression as amechanismof escape todrug inhibition39. In these cases, the
sole evaluation of genomic DNA may erroneously indicate potential drug
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sensitivitywhile the target couldbenonexistent (no longer expressed).Based
on the results of this study, patients being considered for the targeted
therapies could benefit significantly from additional RNA mutation pro-
filing. In this case, RNA-seq can confirm the expression of the intended
target in the tumor, ensuring that the mutations targeted by these therapies
are not only present but also actively expressed.Conversely, loss-of-function
mutations, such as nonsense or frameshift mutations in tumor suppressor
genes, often undergo nonsense-mediated decay, reducing their detectability
by RNA-seq but retaining significant clinical relevance due to their negative
impact on protein function40,41. For example, with BRCA1/2 loss-of-
function mutations that impair BRCA-related protein functions, deter-
mining tumor sensitivity to poly [ADP-ribose] polymerase (PARP) inhi-
bitors is critical42. Therefore, RNA variant analysis has an important role. It
is of utmost importance to distinguish between the application of RNA
variants analysis in case of oncogenic/gain of function versus nonsense/
frameshift loss-of-functionmutations, especially in the case of low- or non-
expressed variants. Acknowledging and accounting for non-expressed but
actionable variants ensures that personalized treatment strategies are
informed by a complete genetic landscape, enhancing the effectiveness of
precision medicine.

One key observation in our study is that only 43–53% of variants
detected in DNA-seq were also recovered in RNA-seq. This discrepancy is
primarily due to the dynamic nature of gene expression, as not allmutations
are transcribed at the time of sampling. However, it is important to consider
several key aspects when interpreting these results. First, our study was
conducted using cancer cell line models, which provide a controlled system
for benchmarking RNA-seq variant detection performance. While these
models are valuable for technical validation, they do not fully capture the
biological complexity of tumor evolution in a patient. In clinical settings,
tumor cells experience dynamic changes, and gene expressions may change
alongside the tumor development. Second, the concern that a variant not
expressed at diagnosis could later become a driver is a valid biological
phenomenon. However, addressing this question would require molecular
profiling in clinical studies, where gene expression changes are tracked over
time, rather than relying on a single time point. Our study does not aim to
predict future tumor evolution but instead focuses on the technical eva-
luation of targeted RNA-seq variant detection and its integration with
DNA-seq analysis. Finally, before RNA-seq can be fully integrated into
precisiononcologyworkflows, its reliability, best practices, andperformance
metrics must be well-evaluated. Our study provides a technical foundation
for future research and clinical studies to evaluate how RNA-seq can be
effectively integrated into patient monitoring and treatment selection.

The identification and prioritization of neoantigens, essential for
developing personalized cancer vaccines, can be significantly enhanced by
integrating RNA-seq with DNA-based sequencing methods like WES43.
NGS data is commonly used to map tumor-specific mutations by com-
paring the genetic profiles of tumor and normal tissues to establish if the
mutation is of a somatic origin. However, the addition of RNA-seq provides
critical insights into whether these mutations are actively expressed, a key
factor in determining their relevance as potential neoantigens44. In addition,
RNA-seq allows for the detection of alternative splicing events, frameshift
mutations, and atypical splicing patterns, all of which may give rise to
neoantigenic peptides that DNA-based methods might miss45. This ability
to refineneoantigen selection is particularly valuable in the context of cancer
vaccines, where only the most immunogenic and tumor-specific targets are
desired. Targeted RNA-seq enhances the selection process by verifying the
expression levels of these variants, allowing researchers to prioritize
neoantigens that are most likely to be presented by tumor cells and elicit an
immune response. RNA-seq also helps uncover novel splicing events and
RNA-level alterations, expanding the range of potential neoantigens. Many
companies are now leveraging targeted RNA-seq in cancer vaccine devel-
opment to address these challenges. For example, therapies like themRNA-
4157 (V940)neoantigenvaccine rely onRNA-seqdata to refine the selection
of immunogenic targets, demonstrating the critical role RNA-seq plays in

advancing personalized cancer treatments. This approach becomes a critical
step in ensuring that the selected neoantigens are both expressed and bio-
logically relevant, improving the overall efficacy of personalized cancer
immunotherapies.

In this study, we analyzed SNVs and small indels ≤5 bases together, as
many widely used variant callers report them in a unified format. In con-
trast, detecting moderate or large indels remains challenging46, and we lack
sufficient data to thoroughly evaluate their detection performance and
impact. Under minimized FPR control (VAF ≥ 2%, total DP ≥ 20, and
ADP ≥ 2), small indels accounted for <5% of all detected variants. Among
these indels, fewer than 10% were known positive variants, representing
only 0.3% to 0.45% of all known variants. Furthermore, most indels that
were not identified as known variants were detected by only one caller and
exhibited low ADP, suggesting that these calls are likely low-confidence
variants. These findings indicate that small indels had aminimal impact on
the overall results, and their presence did not substantially affect our con-
clusions regarding targeted RNA-seq variant detection. Although small
indels had a limited impact in this study, a more comprehensive investi-
gation of indels, particularly larger ones, is needed. Future studies should
explore the effects of indel size, sequencing biases, and probe design con-
straints to further refine RNA-seq variant detection strategies.

While answering many questions, this study does open the door for
future work to explore the role of RNA-seq to further boost precision
medicine. As mentioned earlier, the samples used in this study were, out of
necessity, derived from cell lines and will not reflect the complexmixture of
cell types present in a typical tumor. Thus, future work should include true
clinical tumor specimens, with the consequence of not being able to know
the ground truth. Moreover, this study does not seek to compare or
recommend a specific panel provider over another. The choice of a specific
panel will depend on the research and clinical question, type of tumor,
variants of interest, specimen type, budget, and more.

Methods
Targeted panel design and sample preparation
The “Sample A” used in this study is an artificial sample previously devel-
oped and described with high variant density, generated by pooling 10
Agilent Universal Human Reference RNA (UHRR) cancer cell lines20. This
reference sample was extensively analyzed, with variants and non-variant
nucleotides mapped in a high-confidence consensus target region (CTR)21.
In this study, DNA and RNA derived from Sample A (ten cancer cell lines)
were used to prepare four replicate libraries. These libraries were sequenced
using four targeted panels: AGLR1, AGLR2, ROCR1, and ROCR2, each
designed and provided by the vendors (Fig. 1) to capture specific genomic
regions or transcripts. Although AGLR1 and ROCR1 were originally
designed as DNA panels, RNA was also captured after the reverse tran-
scription to double-strand cDNAand sequencedusing these panels to assess
their applicability forRNA-based variant detection. In contrast, AGLR2 and
ROCR2were specifically designed to provide comprehensive RNAanalysis.
Alignments were conducted against the GRCh38.d1.vd1 reference genome.
Both DNA-seq and RNA-seq adopted paired-end sequencing. The median
read length forDNA-seqwas 151 bp, while for RNA-seq, it was 100 bp.Due
to variations in total reads and panel sizes, the estimated sequencing depth
for DNA-seq varied widely, ranging from approximately 2,000X to 7,000X.
In contrast, RNA-seqmapping rateswere high and consistent, ranging from
94.5% to 97.5%, indicating robust alignment quality across samples (Sup-
plementary Table 6). For a comprehensive breakdown of sequencing cov-
erage, panel designs, sample preparations, SNP filtering criteria, and a
complete list of detected somatic variants with their corresponding VAFs,
please refer to our data descriptor paper47.

There are some notable differences between AGLR and ROCR panels.
Firstly, the probe length of the AGLR panels was 120 bps, which is longer
than ROCR’s average length of 75 bps (min 50 bps; max 100 bps). Addi-
tionally, while AGLR2 and ROCR2 panels were designed for almost the
same regions of the genome, Agilent minimized the presence of exon-exon
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spanning probes. As a result, over 85% of the probes were fully contained
within a single exon, making them suitable for DNA-seq as well. On the
other hand, when Roche selected the probe candidates, individual exons
were generally covered once in the exemplar transcript, and the set of exon-
exon junctionswas covered for every unique combination. Formore details,
please refer to our data descriptor paper47. These panels targeted different
gene sets, with query regions covering 1.92, 2.91, 1.78, and 3.66million base
pairs within the CTR, and corresponding KP variants of 2741, 4551, 2669,
and 5531 for AGLR1, AGLR2, ROCR1, and ROCR2, respectively. For
further comparison, whole transcriptome sequencing (WTS) was per-
formed to cover the entire CTR (21.65 million bps), including 37,668 KP
variants. Small genetic variants were detected fromDNA-seq and RNA-seq
data using an in-house assembled bioinformatic pipeline modified from
SomaticSeq25. The details of known variants detected (VAF ≥ 2%, total
DP ≥ 20, and ADP ≥ 2) in RNA-seq data from four panels are listed in the
Supplementary Table 7.

Assembled variant calling pipeline—somaticSeq
To ensure robust and high-confidence variant detection, we utilized the
SomaticSeq pipeline, an assembled framework that integratesmultiple best-
practice variant callers for somaticmutation detection. RNA-seq reads were
aligned to the GRCh38.d1.vd1.fa reference genome using HISAT2 (v2.1.0),
while DNA-seq reads were aligned using BWA-MEM (v0.7.15) tomaintain
consistency in genomic coordinate mapping. Post-alignment processing
steps, including duplicate marking, splitting CIGAR strings, and base
quality score recalibration (BQSR), were performed following GATK best
practices. For variant calling,we integrated threewidelyused tools,MuTect2
(v4.0.5.2)23, VarDict (v1.5.1)22, and LoFreq (v2)24, within the SomaticSeq
pipeline. Each toolwas runwith its defaultfiltering settings, and SomaticSeq
was used to integrate, filter, and refine the final variant set, leveraging its
ensemble approach to enhance the results.

Assessment based on known positive variants and known
negative positions
Sample A was thoroughly analyzed in our previous studies20, where over
40,000 KP variants and 10million KN positions were identified in the CTR.
This region allows for higher accuracy and lower FPR than other genomic
regions. This study restricted all panel results to the CTR to obtain high-
confidence variants for further assessment and comparison. We leveraged
KPs and KNs as a truth set to calculate the positive predictive value (PPV)
and false positive rate (FPR).

Calculation of variant expression
Read counts of the exons containing the variants were used to represent
variant expression. HTSeq-Count48 was adopted to calculate the read
counts. We created the feature file (GFF) by collecting the smallest exons
that cover the target variants, and then calculated the expression of
these exons.

Calculation of reproducibility
Four replicate libraries prepared for each panel were used to calculate the
reproducibility. The reproducibility between any two of the replicate
libraries, designated as “LibA” and “LibB” was calculated as the portions of
common variant calls between them. It is important to note that these
reproducibility values are not symmetrical, as the total number of variants
called in each librarymay vary. For each pair of replicates, therewere in total
12 reproducibility values for each panel. We observed a boundary effect
induced by the hard VAF cutoff across multiple replicates. For instance, the
VAFcutoff for theAGLR2panelwas set at 3.7%. If a variant’sVAFwas 3.8%
in LibA but 3.6% in LibB, it should still be considered reproducible despite
not being included in the final results of LibB. To account for this boundary
effect, when determining the reproducibility of LibA to LibB, we applied the
minimal VAF cutoff of 2% for LibB to reduce the impact of the effect. This
approach ensured a more accurate representation of reproducibility
between the libraries.

Calculation of PPV lower and upper bounds
The PPV was calculated as the ratio of known positive variants to the total
number of variants called by each panel or within panel regions by WTS.
Since our truth set was incomplete, some calls were classified as unknown,
meaning they are neither KPs nor KNs. Therefore, we calculated the upper
and lower bounds of PPV for both targeted RNA-seq panels andWTS data.
The true PPVs are expected to line within the range of lower and upper
bound values observed.

Upper bound PPV ¼ Number of KPs detected þ Number of unknown calls detected
Total number of calls detected

ð1Þ

Lower bound PPV ¼ Number of KPs detected
Total number of calls detected

ð2Þ

Estimation of FPR based on known negative variant positions
In Sample A, over 10 million high-confidence KN variant positions in the
CTR were pre-identified. Any call made at a negative variant position was
considered a FP. The CTR is ~21.7 million bases, indicating that about half
of these positions are unknown. Therefore, our FPR estimation might be
conservative, as some calls remain uncharacterized, being neither con-
clusively KP nor KN. We estimated the FPR in each panel and CTR as the
number of FP calls per million bases:

Estimated FP rate ¼ Number of variants detected at KN positions
Known negative size in panel & CTR

� 1; 000; 000

ð3Þ

Aligner comparison pipeline
To assess the impact of different aligners on variant detection,weperformed
a systematic evaluation using three RNA-seq aligners: HISAT2 (v2.1.0),
STAR (v2.7.8a), and MagicBlast (v1.5.0). This comparison aimed to
determine how differences in alignment strategies influence variant calling
outcomes (Supplementary Fig. 5). Raw RNA-seq reads from the AGLR1,
AGLR2, ROCR1, andROCR2 panels were aligned to theGRCh38.d1.vd1.fa
reference genome using each of the three aligners. The annotation file used
for alignment was Gencode v28. HISAT2 and Magic-Blast were run with
default parameters,while STARwas run in two-passmode to enhance splice
junction detection.

To standardize preprocessing across aligners, all BAM files underwent
the following steps recommended by Mutect2: FixMateInformation,
MarkDuplicates, SplitNCigarReads, BaseRecalibrator+ApplyBQSR. After
preprocessing, variant calling was performed using MuTect2 (v4.0.5.2)
across all aligners to ensure comparability. This workflow was designed to
isolate the effects of alignment while ensuring consistent downstream var-
iant calling and filtering criteria. To ensure a more reliable comparison
across aligners, the final variant calls underwent stringent filtering: VAF
filteringwas adjusted per panel and aligner to achieve a FPR of 5 permillion
bases. Variants were required to have ALT DP ≥ 4 and total DP ≥ 20.

Drug- or disease-related variant identification
The ClinVar annotation (2021-04) file was downloaded to support the
query. SnpSift29 was used to obtain the clinical information with ClinVar
information of the targeting variants. The clinical disease names (CLNDN)
in the results were extracted to describe the functions of variants. Next, we
predicted thepotential impact of the variants via SnpEff. This tool provides a
simple assessment of the putative variant impact on protein function, such
as HIGH, MODERATE, or LOW impact.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article and its supplementary information files.
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